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1 Introduction

1.1 The History and Definition of π

Abstractness is not a new concept at all in the field of mathematics. It is relatively
straightforward to understand that mathematicians, especially those in the field of pure
mathematics would attempt to push the boundaries that may seem alien to the real world.
However, one number has always fascinated me –not because of its existence, but because
of how often it appears in real-world applications across many fields despite its seemingly
”unrealistic” nature. I am talking about the famous π.

Let’s consider a popular challenge involving π: how many digits of π can you recite? Is it 10
digits? 100 digits? maybe even 1000? According to the Guinness World Records, Rajveer
Meena holds the record for memorizing an astonishing 70,000 digits of π [6]. While this
feat is nothing short of extraordinary, it barely scratches the surface, as π continues infinitely.

This raises an important question: how can a never-ending value be used in real life? And
who discovered π in the first place? Let’s take a brief journey through the history of π.

The earliest known approximations of π comes from the Babylonians (c. 1900-1600 BCE)
where they calculated the area of a circle by taking three times the square of its radius,
giving π ≈ 3. They were also able to improve this approximation to 25

8
= 3.125 [3]. Around

the same time period, the Ancient Egyptians (c. 1650 BCE) , as recorded in the Rhind
Mathematical Papyrus (written by the scribe Ahmes) approximated π as (16

9
)2 ≈ 3.16

[3]. Nonetheless, the first to rigorously calculate the bounds of π was done by one of the
most famous mathematicians in history, Archimedes of Syracuse (c. 287 - 212 BCE).
He achieved this by inscribing and circumscribing polygons around a circle. By increasing
the number of sides of these polygons, up until a 96-sided polygon, Archimedes was able to
narrow down the value of π [1]. A brief outline of Archimedes’ method for approximating π
is given in Appendix 1.

He established the following bounds for π:

310
17

< π < 31
7

The following image illustrates this method by showing a circle with inscribed polygons of
increasing sides, demonstrating how the polygons approach the shape of the circle more
closely:
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Figure 1. A circle inscribed and circumscribed by a triangle, pentagon and a decagon.

As the number of sides increases (e.g., triangles, pentagons, decagons), the polygons approximate
the circumference of the circle more precisely. This technique laid the foundation for future
methods to approximate π.

Further down the line, we get closer to what we might all be familiar in the modern-day
representation of π. InAncient China, two figures made significant discoveries regarding π.
Chinese mathematician Liu Hui (c. 3rd Century CE), similar to Archimedes’ method, used
a 96-sided polygon and further refining his method by using a 192-sided polygon, calculated
π to be approximately 3.14159. Additionally, another mathematician, Zu Chongzhi (c. 5th
Century CE) calculated π to seven decimal places (3.1415926) and further gave a fractional
approximation 355

113
, which remained highly accurate for around 1000 years after its discovery

[9].

Of course there is so much more to the history of π, but this brief overview shows how the
value of π has evolved over time. Now, let’s delve into the fascinating irrationality of π.

1.2 The Irrationality of π: Why Saying π is Infinite Isn’t Entirely
Accurate

Let us discuss what it means for a value to be irrational. An irrational number is simply
a number that is not rational. In other words, it cannot be expressed as a ratio of two
numbers (like a

b
where a, b ∈ Z and b ̸= 0).

For example, consider the number
√
2. No matter how hard one tries, it is impossible to

express
√
2 as a simple fraction like p

q
. The decimal expansion of this value goes on forever

without repeating. A proof of this is outlined in Appendix 2:

1.41421356 . . .

This non-repeating, non-terminating nature is the defining feature of irrational numbers.

The number π also shares this property. In 1768, Johann Lambert proved that π is
irrational [7], to which Miklós Laczkovich gave a more modern and accessible proof in
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1997. A brief outline of Laczkovich’s proof can be seen in Appendix 3. This means that
there is no fraction a

b
that equals π exactly. Its decimal expansion goes on forever without

ever settling into a repeating pattern:

π = 3.14159265358979 . . .

However, it is very important to clarify what we mean when we say that π is infinite. This
itself is in fact flawed since the number π is finite–it has a definite value. What is infinite
is its decimal representation. The distinction between the two is crucial.

1.3 Finite Value vs. Infinite Representation

When dealing with numbers like π or
√
2, it is essential to understand the distinction between

their finite values and their infinite decimal representations. At first glance, this may
seem contradictory, but the distinction is fundamental to understanding irrational numbers.

A finite value refers to a specific, well-defined quantity. This does not necessarily mean it
can be expressed fully in decimal form, but rather, the number represents a unique point on
the number line. For example:

• The number π is the exact ratio of the circumference of a circle to its diameter.

• The number
√
2 is the exact length of the diagonal of a square with the sides having

a length of 1.

On the other hand, an infinite decimal representation is a way of expressing a number
in the decimal system where the digits go on forever without terminating. This occurs
frequently with irrational numbers, which cannot be written as a fraction of two integers.
Examples include:

1. π = 3.141592653589793 . . . (non-repeating)

2.
√
2 = 1.41421356237 . . . (non-repeating)

3. Even rational numbers like 1
3
= 0.3333 . . . have infinite, repeating decimals

Despite their infinite decimal expansions, numbers like π or
√
2 represents a definite, finite

quantity. For instance, the circumference of a circle with a diameter of 1 unit is exactly π
units. This value is finite, fixed and does not change.

It is remarkable how finite values (even certain rational numbers) can have infinite decimal
expressions. But why does this happen? The answer lies in the limitations of the base-10
decimal system we use.

In a base-10 system, we represent numbers using powers of 10. When converting a number
into a decimal format, we express it as a sum of these powers. For example, the decimal
2.136 can be represented as:
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2× 100 + 1× 10−1 + 3× 10−2 + 6× 10−3

However, not all numbers can be perfectly expressed as finite sums of these powers of 10.
This is a limitation of the decimal system, not of the numbers themselves.

Interestingly, there are other number bases where a value can be represented finitely, even
if it cannot be done in base-10. For example, in base-10:

1
3
= 0.3333333 . . .

However, in base-3 (also called ternary), this same fraction has a finite representation:

1
3
= 0.13

This works because 3 divides evenly into powers of 3, making the division exact and finite in
base-3. Conversely, the values that have finite representations in base-10 may have infinite
representations in other bases.

Now that we have established the distinction between finite values and infinite decimal
representations, consider the following analogy to better understand this concept.

Analogy: Measuring a Rope

Suppose you have a rope that is exactly π meters long. The rope itself has a definite,
finite length. It does not stretch into infinity–it is precisely π meters long. However, if
you try to measure it using increasingly precise units (e.g., meters, centimeters, millimeters,
micrometers), you can keep expressing the length with more decimal places:

3.1m, 3.14m, 3.141m, 3.1415m . . .

You can never write down the exact length in decimal form since the digits go on forever.
However, this does not mean that the rope itself is becoming increasingly longer as you add
more decimal places.

2 Applications

2.1 Ratio of a Circle’s Circumference

There have already been previous mentions of π as the ratio of a circle’s circumference. Here,
I will go a little more in depth into how this relationship is applicable in the real world.

π is fundamentally defined as the ratio of a circle’s circumference C to its diameter d:

π = C
d

Thus, the circumference of a circle can be expressed as:

C = πd = 2πr
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where r is the radius of a circle.

The relationship between π and a circle is fundamental to the fields of geometry and
trigonometry. This relationship is used in various applications such as calculating the
length of circular objects (e.g., wheels, pipes) and designing structures with circular features
(e.g., domes, arenas). Despite π’s infinite decimal expansion, we can use approximations like
3.14 or 22/7 to achieve precise enough measurements for real-world applications.

Examples of Real-World Applications

1. Engineering and Architecture: Calculating the circumference or perimeter of
circular structures such as tunnels or bridges. For example, if an architect designs
a circular section of a park with a diameter of 10 meters, the circumference is

C = π × 10 ≈ 31.42 meters

2. Manufacturing: Producing gears and wheels where precise measurements of circular
dimensions are important. A bicycle wheel with a radius of 0.35 meters has a circumference
of:

C = 2π × 0.35 ≈ 2.2 meters.

3. Astronomy: Determining planetary orbits and calculating the circumferences of
celestial bodies. For instance, the Earth’s equatorial diameter is about 12, 742km,
making its circumference approximately:

C = π × 12, 742 ≈ 40, 030km

2.2 Waves and Oscillations

π also appears naturally in the study of waves and oscillations due to their periodic nature.
Functions like sine and cosine describe wave behaviors and are intimately connected with π,

y = sin θ, y = cos θ

where θ is the angle measured in radians, and one full cycle corresponds to 2π radians
(equivalent to 360◦)

Wave Properties Involving π

1. Period of a Wave: The period T is the time it takes for a wave to complete one
cycle. For a sine wave, the period is typically related to 2π. The general equation for
a wave can be expressed as:

y(t) = A sin
(
2π
T
t
)

where A is the amplitude and t is time.
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2. Angular Frequency: The frequency f is the number of cycles per second. The
angular frequency ω of a wave is given by:

ω = 2πf

where f is the number of oscillations per second.

Examples of Real-World Applications:

1. Musical Notes: Musical notes are produced by vibrating strings (such as on a violin
or guitar) or air columns (as in brass instruments). The pitch of a note depends on
the frequency of the wave, which involves π. For example, a tuning fork vibrating at
440Hz, which is the note A, can be described by the function:

y(t) = A sin(2π × 440× t).

2. Electromagnetic Waves: Light, radio waves and microwaves oscillate at very high
frequencies. These waves are described using sine and cosine functions involving π.
For a plane electromagnetic wave traveling in the x-direction, the electric field E and
magnetic field B can be expressed as:

E(x, t) = E0 sin(kx− wt)ĵ

B(x, t) = B0 sin(kx− wt)k̂

Where:

• E0 is the amplitude of the electric field.

• B0 is the amplitude of the magnetic field.

• k = 2π
λ

is the wave number such that λ is the wave length.

• ω = 2πf is the angular frequency, where f is the frequency (as shown previously).

• x is the position in space.

• t is time and ĵ, k̂ are unit vectors indicating the directions of the fields.
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Figure 2. Visualization of an electromagnetic wave

In summary, the electric field E(x, t) oscillates in the y-direction (ĵ), the magnetic field
B(x, t) oscillates in the z-direction (k̂) and the wave propagates in the x-direction.

3 The Finite and the Infinite

3.1 π as a Bridge Between the Finite and Infinite

The number π uniquely illustrates how mathematics connects the finite world we experience
to the infinite complexities underlying it. Though π has an infinite decimal expansion,
it represents something very concrete and finite.

An interesting geometric paradox arises from a perfect circle. Its boundary is smooth, finite
and easy for anyone to visualize. Yet, the number needed to describe its exact circumference
is infinitely complex. This paradox beautifully demonstrates how simple, finite shapes
can hide infinite mathematical depth.

I have yet to discuss, due to its complex nature, but the infinite nature of π becomes even
more evident in its representation through what is known as an infinite series, which is a
sum of values that never ends:

π = 4
∞∑
n=0

(−1)n

2n+1
= 4

(
1− 1

3
+ 1

5
− 1

7
+ . . .

)
[7]

The above is known as the Leibniz series, which shows that calculating the exact value of
π requires the summation of an infinite number of terms. It highlights how the finite value
of π is intrinsically tied to a never-ending process.
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Figure 3. Convergence of the Leibniz series for π

The above figure shows that the more terms you add to the Leibniz series, the closer and
closer you get to the true value of π.

3.2 Practicality vs Precision

While π has an infinite decimal expansion, in practice, we rarely need its full precision as
shown in some of the real-world examples. This balance between practicality and precision
shows how we harness the infinite nature of π for the use of finite, real-world purposes.

The level of precision required depends on the application:

• Space Exploration: NASA typically uses π to about 15 decimal places for spacecraft
navigation. This precision is necessary for calculating the trajectory of spacecraft
traveling millions of kilometers in space [5].

• Everyday Applications: For most day-to-day calculations, two decimal places
(π ≈ 3.14) are sufficient. For example, calculating the circumference of a dinner plate
or a roundabout does not require extreme precision required for space exploration.

• Engineering: In fields like civil and mechanical engineering, π is often used to four
to five decimal places when constructing large circular structures. This level of
accuracy ensures that calculations are precise enough for practical use.

In pure mathematics and research, computing π to trillions of digits serves to test the
limits of computational power and explore mathematical theory rather than to solve practical

8



problems.

Despite the infinite complexities of π, it can still be approximated with remarkable accuracy.
In fact, in many real-world situations, using too many decimal places for π often results in
diminishing returns. The additional precision becomes effectively meaningless compared to
other more prominent factors such as material imperfections or measurement errors.
This balance between practicality and precision truly highlights how mathematics, while
abstract, can be applied effectively to solve concrete, finite problems.
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A Appendices

A.1 Archimedes’ Method for Approximating π

Let C be the circumference of a circle with radius r. The circumference is related to π by
C = 2πr.

Archimedes used regular polygons with n sides inscribed inside and circumscribed outside
the circle. Let Cn be the circumscribed polygon and cn be the inscribed polygon such that:

cn < C < Cn

It is clear from the figure above that the decagon (or 10−gon) has a circumference that is
closest to the circle.

Thus, we can find an accurate value of π by taking some large n, but rather than brute
forcing through every possible value of n, Archimedes doubled the number of sides.

To calculate the side length of new polygon when doubling the sides, Archimedes used the
Pythagorean theorem. Let sn be the side length of a polygon with n sides, then the side
length s2n of a polygon with 2n sides can be determined using the formula:

s2n =

√
2−

√
4− s2n (1)

This formula comes from the geometry of the circle and the triangles formed within the
inscribed polygon.

Start with a hexagon where n = 6. For a circle of radius r = 1, the side length s6 of the
inscribed hexagon is:

s6 = 2 sin(π
6
) = 1

The use of sin(π
6
) might seem counterintuitive since it seems that we are approximating π

by using π, but this value comes from the known geometric property of a hexagon inscribed
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in a unit circle.

We can then double this by using equation 1:

s12 =

√
2−

√
4− s26 =

√
2−

√
4− 12 =

√
2−

√
3 (2)

By continuing this process, we get:

s96 =

√
2−

√
4− s248 (3)

After calculating the perimeters of the inscribed and circumscribed polygons for a 96-sided
polygon, Archimedes found the following bounds for π:

310
71

< π < 31
7

or in decimal form:

3.1408 < π < 3.1429

We can also take a look at the following table of approximations to see that the approximation
error gets increasingly smaller:

Table of Approximations

Iterations Sides Result Error

0 4 2.8284271247 -0.3131655288
1 8 3.0614674589 -0.0801251947
2 16 3.1214451523 -0.0201475013
3 32 3.1365484905 -0.0050441630
4 64 3.1403311570 -0.0012614966
5 128 3.1412772509 -0.0003154027
6 256 3.1415138011 -0.0000788524
7 512 3.1415729404 -0.0000197132
8 1024 3.1415877253 -0.0000049283
9 2048 3.1415914215 -0.0000012321
10 4096 3.1415923456 -0.0000003080

Table 1: Results of polygon approximations for π with increasing iterations [2].

For a more detailed explanation, see: Damini D.B and Abhishek Dhar. How Archimedes
show that π is approximately equal to 22

7
[1].
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A.2 Euclid’s Proof of the Irrationality of
√
2

Statement: The square root of 2 is irrational.

Properties of Fractions and Even Numbers:

1. If you take any number and multiply it by 2, the result must be even.

2. If the square of a number is even, the number itself must be even.

3. Fractions can be simplified (e.g., 12
8

= 3
2
). However, it is impossible to simplify a

fraction forever.

Proof. Assume that
√
2 is a rational number. That is, it can be written in the form:

√
2 = p

q
where p, q ∈ Z

By squaring both sides, we get:

2 = p2

q2

Rearranging the terms gives:

2q2 = p2

By property 1, we know that p2 must be even. Moreover, from property 2, p must also
be even. We can then write it as 2m, where m is some whole number. Thus we get the
following:

2q2 = (2m)2 = 4m2

Divide both sides by 2:

q2 = 2m2

Again, by the same arguments used before, q2 and q must also be even. We can write q as
2n for some whole number n.

√
2 = p

q
= 2m

2n

This can then be simplified by dividing both the numerator and denominator by 2.
√
2 = m

n

The above equation is now in a simpler form than the initial p
q
. However, we can repeat this

exact same process on m
n
, thus generating an even simpler fraction, to which we can also

repeat the same process over and over again.

This implies that there is an infinite number of simplifications, which by property 3, is
impossible. There must always be a simplest fraction.

Hence,
√
2 is irrational by contradiction [8].
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A.3 Laczkovich’s Proof of the Irrationality of π

Proof. Suppose, for contradiction, that π is rational. That is π = p
q
, where p, q ∈ Z.

Consider the Taylor series for sin(x). The sine function has the following Taylor series
expansion around x = 0:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . . =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
(4)

Plugging π = p
q
into the Taylor series gives:

sin

(
p

q

)
=

p

q
−

(
p
q

)3

3!
+

(
p
q

)5

5!
− . . . (5)

We know that sin(π) = 0. Hence, the infinite sum must equal zero:

0 =
p

q
−

(
p
q

)3

3!
+

(
p
q

)5

5!
− . . . (6)

We can then rewrite the equation by multiplying both sides by q2n+1 to clear the denominators
of p

q
:

0 = pq2n − p3q2n−2

3!
+

p5q2n−4

5!
− . . . (7)

Observe that the right-hand side is an infinite sum of terms involving integers, alternating in
sign. However, also notice that this sum cannot equal zero unless p = 0, which contradicts
the initial assumption that π = p

q
is a non-zero value.

Hence, π is not rational and as a result, must be irrational.

For a more detail explanation, see: Laczkovich, M. (1997). On Lambert’s proof the
irrationality of π. American Mathematical Monthly, 104(5), 439-443 [4].

A.4 Leibniz’s Series for π

The Leibniz series for π is given by:

π = 4
(
1− 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

)
= 4

∞∑
n=0

(−1)n

2n+1

This series expresses π as an alternating sum of fractions involving odd values.

The above series can be derived from the Taylor series expansion of the arctangent function
arctan(x):
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arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, for |x| ≤ 1 (8)

In the special case arctan(1), we know that:

arctan(1) = π
4

Substitute x = 1 into the Taylor series for arctan(x) gives:

π
4
=

∞∑
n=0

(−1)n 1
2n+1

Multiply both sides by 4, we get the Leibniz series:

π = 4
∞∑
n=0

(−1)n

2n+1

The alternating nature of the series ensures that the partial sums get closer and closer to π
as more terms are added.

Although the Leibniz series works, it converges very slowly. This slow implies that a large
number of terms are required to get an accurate approximation of π.

Observe the following and how the increasing number of terms improves the approximation:

π ≈ 4(1) = 4.0000 (Error: 0.8584)

π ≈ 4
(
1− 1

3
+ 1

5

)
= 3.4667 (Error: 0.3251)

π ≈ 4
(
1− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ 1

13

)
= 3.2840 (Error: 0.1424)

π ≈ 4
(
1− 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ 1

13
− 1

15
+ 1

17
− 1

19

)
= 3.0416 (Error: −0.1000)

The slow convergence occurs due to the terms 1
2n+1

decreases very gradually. In other words,
each additional term only makes a small adjustments to the overall sum. The Leibniz series
is often used to introduce concepts of infinite series and alternating series in calculus and
real analysis courses.

For a more detailed explanation, see: Wikipedia contributors. Leibniz formula for π.
Wikipedia, The Free Encyclopedia [10].
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